MATHEMATICS METHODS

MAWA Semester 2 (Unit 3&4) Examination 2018 Calculator-free

Marking Key

© MAWA, 2018

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 1 of term 4, Fri October 12th 2018

Section One: Calculator-free

(54 Marks)

Question 1 (a)	
----------------	--

(3 marks)

Solution	
$\int_{1}^{4} \left(6x^2 + \frac{1}{2\sqrt{x}} \right) dx$	
$= \left[2x^3 + \sqrt{x}\right]_1^4$	
=(2(64)+2)-(2+1)=127	
Mathematical behaviours	Marks
integrates square root function correctly	1
substitutes limits into correct anti-derivative	1
evaluates result	1

Question 1 (b)

(2 marks)

(2 marks)

Solution		
$g'(x) = e^{\frac{x+1}{2}}$		
$g(x) = 2e^{\frac{x+1}{2}} + c$		
$(3,e^2) \Rightarrow e^2 = 2e^2 + c \Rightarrow c = -e^2$		
$\therefore g(x) = 2e^{\frac{x+1}{2}} - e^2$		
Mathematical behaviours	Marks	
anti-differentiates correctly	1	
• substitutes in $(3, e^2)$ to determine c	1	

Question 1 (c)

_		(=
	Solution	
$\int_{0}^{\frac{\pi}{2}}$	$\frac{d}{du}\sin u du = \left[\sin u\right]_o^{\frac{\pi}{2}} = 1$	
	Mathematical behaviours	Marks
٠	applies the fundamental theorem	1
•	evaluates result	1

(2 marks)

Question 2 (a)

	• •
Solution	
$X \sim N(45,9^2)$	
$z_{63} = \frac{63 - 45}{9} = 2$	
ie 63 represents 2 std deviations above the mean	
2.5% of the population is above 63	
∴ 0.025×150=3.75	
ie approximately 4 students scored above Joanne.	
Mathematical behaviours	Marks
 states that 63% represents 2 std deviations above the mean 	1
 determines number of students above Joanne 	1

Question 2 (b)

Question 2 (c)

Question 2 (c)		(3 marks)
	Solution	
$\mu_{X} = 45,$	$\sigma_X = 9$	
$\mu_{Y} = 55,$	$\sigma_Y = 6$	
Y = aX + b		
$a = \frac{6}{9} = \frac{2}{3}$		
$55 = \frac{2}{3} \times 45 + b$		
25 = b		
$\therefore a = \frac{2}{3}, b = 25$		
	Mathematical behaviours	Marks
 uses standar 	rd deviations to determine a	1
 states equat 	ion needed to solve for b	1
• determines <i>l</i>	value	1

Ques	stion 3 (a)			(2 marks)
		Solution		
	X	5	(-3)	
	P(<i>X</i> = <i>x</i>)	$\frac{1}{4}$	$\frac{3}{4}$	
	N	lathematical behaviour	S	Marks
•	correct entries for X val	ues		1
•	determines probabilities	s correctly		1

Question 3 (b)

Solution		
$E(X) = 5 \times \frac{1}{4} + (-3) \times \frac{3}{4}$		
$=\frac{5}{4} - \frac{9}{4} = (-1)$		
On average, Michael will lose \$1 per toss		
Mathematical behaviours	Marks	
determines expected gain correctly	1	
 explains meaning of the negative value 	1	

Question 3 (c)

Question 3 (c)	(2 marks)
Solution	
With a loss of \$1 per toss, this is not a "fair" game.	
A game is considered "fair" if Michael will, on the average, come out even. That is, an expected gain of zero will define a "fair" game.	
Mathematical behaviours	Marks
states game is "not fair"	1
valid explanation	1

(2 marks)

Question 4 (a)

(3 marks)

Solution	
$16^x - 5 \times 8^x = 0$	
ie $2^{4x} = 5 \times 2^{3x}$	
ie $4x \log 2 = \log 5 + 3x \log 2$	
\therefore ie $x \log 2 = \log 5$	
ie $r = \frac{\log 5}{\log 5}$	
$\log 2$	
	•
Mathematical behaviours	Marks
rearranges equation and writes in exponential form	1
applies log laws to each term of equation	1
rearranges equation to arrive at result	1

5

Question 4 (b)

(3 marks)

Solution		
$5^{(2+\log_5 3)} + \log_1 125$		
5		
$=5^2 \cdot 5^{\log_5 3} + \log_1(\frac{1}{5})^{-3}$		
$=25 \times 3 - 3$		
= 75 - 3		
= 72		
Mathematical behaviours	Marks	
• uses $a^m \cdot a^n = a^{m+n}$ and $a^{\log_a b} = b$	1	
• expresses $\log_1 125 as \log_1(\frac{1}{5})^{-3}$, hence value of (-3)	1	
 evaluates expression 	1	

Question 5 (a)

Solution	
$y = \ln\sqrt{3x - x^2}$	
$=\frac{1}{2}\ln(3x-x^2)$	
$\frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{(3x - x^2)} \cdot \frac{(3 - 2x)}{1} = \frac{(3 - 2x)}{2(3x - x^2)}$	
Mathematical behaviours	Marks
• expresses $y = \ln\sqrt{3x - x^2}$ as $y = \frac{1}{2}\ln(3x - x^2)$	1
• uses $\frac{d}{dx} \ln x = \frac{1}{x}$	1
applies chain rule correctly and simplifies	1

Question 5 (b)

(3 marks)

(4 marks)

(3 marks)

Solution	
$\int_{0}^{\frac{\pi}{4}} \frac{\sin 2x}{1+\sin^{2}x} dx = \int_{0}^{\frac{\pi}{4}} \frac{2\sin x \cos x}{1+\sin^{2}x} dx$	
$=\ln 1+\sin^2 x _0^{\pi/4}$	
$=\ln\left 1+\frac{1}{2}\right -\ln 1 $	
$=\ln\frac{3}{2}$ or $\ln 3 - \ln 2$	
Mathematical behaviours	Marks
states anti-derivative of function with bounds	1
• substitutes in limits of integration correctly using $\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$	1
evaluates result	1

Question 5 (c)

Solution Let $y = x \cos x$ $\frac{dy}{dx} = -x\sin x + \cos x$ Hence $\int \frac{dy}{dx} dx = \int (-x \sin x + \cos x) dx$ $x\cos x = -\int x\sin x \, dx + \int \cos x \, dx + c$ ie $x\cos x = -\int x\sin x \, dx + \sin x$ ie $\int x \sin x \, dx = \sin x - x \cos x + c$ ie Mathematical behaviours Marks 1 states correct derivative • 1 integrates both sides 1 applies Fundamental Theorem . 1 rearranges to arrive at correct result •

Question 6 (a)	(2 marks)
Solution	
$\hat{p} = 1 \Longrightarrow 5$ heads in 5 tosses	
$\therefore \text{ probability} = \left(\frac{1}{2}\right)^5 = \frac{1}{32}$	
Mathematical behaviours	Marks
identifies that each toss must result in a head	1
determines probability	1

Question 6(b)

Solution	
\hat{p} is normally distributed with	
$\mu = 0.5 \text{ and } \sigma = \sqrt{\frac{0.5 \times 0.5}{100}} = .05$	
$z_{0.55} = \frac{0.55 - 0.5}{0.05} = 1$	
Hence, $P(\hat{p} > 0.55) = P(z > 1) \approx 0.16$	
Mathematical behaviours	Marks
 identifies that p̂ will be normally distributed 	1
- determines mean and standard deviation for distribution of \hat{p}	1
• determines Z score associated with $\hat{p} = 0.55$	1
determines probability	1

Question 6 (c)

(3 marks)

Solution	
$P(\widehat{p_1} = \widehat{p_2}) = P(\widehat{p_1} = \widehat{p_2} = 0) + P\left(\widehat{p_1} = \widehat{p_2} = \frac{1}{3}\right) + P\left(\widehat{p_1} = \widehat{p_2} = \frac{2}{3}\right) + P(\widehat{p_1} = \widehat{p_2} = 1) (*)$	
$= (P(\widehat{p_1} = 0)^2 + (P(\widehat{p_1} = 1/3)^2 + (P(\widehat{p_1} = 2/3)^2 + (P(\widehat{p_1} = 1)^2)^{(**)})$	
$= \left(\frac{1}{8}\right)^2 + \left(\frac{3}{8}\right)^2 + \left(\frac{3}{8}\right)^2 + \left(\frac{1}{8}\right)^2 = \frac{20}{64} = \frac{5}{16}$	
Mathematical behaviours	Marks
• determines \hat{p} values $0, \frac{1}{3}, \frac{2}{3}, 1$	1
 states calculation required to determine probability 	1
evaluates required sum	1

7

(4 marks)

Question 7 (a)	(4 marks)
Solution	
$f'(x) = 3x^2e^{-x} - x^3e^{-x} = x^2(3-x)e^{-x}$	
$f'(x) = 0 \Rightarrow x = 0 \text{ or } x = 3.$	
$f(0) = 0, f(3) = 3^{3}e^{-3}$, so f has stationary points at (0,0) and at (3, $3^{3}e^{-3}$)	
Since $f'(x) \ge 0$ if $x < 3$ and $f'(x) < 0$ if $x > 3$, $x = 3^{-1} - 3$	3+
f has a point of inflection at (0,0) $f'(x) + ye = 0$	-ve
and f has a local maximum at $(3, 3^3 e^{-3})$	
Mathematical behaviours	Marks
differentiates correctly	1
• equates $f'(x) = 0$ and determines co-ordinates of stationary points	1
justifies nature of first stationary point	1
justifies nature of 2nd stationary point	1

Question 7 (b)

Question 7 (b)	(2 marks)
Solution	
Yes.	
Reason: $f(3) = 3^3 e^{-3} = \left(\frac{3}{e}\right)^3 > 1$ since $0 < e < 3$	
Mathematical behaviours	Marks
gives correct answer	1
gives a valid reason	1

Question 7 (c)

8